On the syntactic complexity of the event domain in Hungarian

Aims and claims: The aim of this talk is to propose a novel phrase structure representation of the core event domain (Ramchand 2017) of the Hungarian sentence. More specifically, we focus on the grammar of inner aspectual markers and argue that they are to be represented in the syntax. In line with previous literature on the syntax of inner aspectual markers across languages (Ritter & Rosen 2005; MacDonald 2008; Travis 2010), we claim that Hungarian also has an inner aspectual projection (Asp₁P) sandwiched between VP and vP, which is directly responsible for weak telicity effects induced by subcategorized measuring-out objects of creation/consumption predicates (CCOs) and non-subcategorized pseudo-objects (POs). In addition, we argue for a second inner aspectual projection (Asp₂P_{MAX}) above vP, which is directly responsible for strong telicity effects induced by verbal particles (VPrts) and result predicates of change of state and location (RPs). Support for our analysis comes from word-order properties, scope facts, and the presence/absence of aspectual variability. The novelty of this work is that it offers a unified syntactic analysis of the event aspectual facts associated with these three classes of elements.

Previous literature: As far as CCOs are concerned, É. Kiss (2008) claims that they are merged in a postverbal position and it is their lexical semantics that contributes to (a)telic interpretation. With respect to POs, Csirmaz (2008) argues that they move to [Spec, PredP] when they precede the verb. As regards VPrts and RPs, they have also been claimed to be merged in the complement zone of V as arguments of V (É. Kiss 2008; Surányi 2009) or small clause predicates (Hegedűs & Dékány 2017), from which they undergo movement first to [Spec, PredP] (inside vP) and then to [Spec, TP] (outside vP) (Surányi 2009). In these analyses it is the predicative nature of VPrts/RPs and POs that triggers their movement in the verbal domain; their inner aspectual contribution is only a semantic matter.

Analysis: **CCOs:** CCOs in Hungarian can measure out events when associated with quantized reference (É. Kiss 2008). Crucially, however, they can just as easily give rise to an atelic interpretation (Kardos 2016). We propose that, as subcategorized, thematic and referential internal arguments, quantized CCOs merge in the canonical direct/logical object position inside VP and, when they induce a telic interpretation, they move to the derived object position in [Spec, Asp₁P] to receive Accusative case (MacDonald 2008; Travis 2010). This one-stage derivation is also characterized by V undergoing head movement to v:

\[(1) \ [TP \ T [Asp₂P_{MAX} \ Asp₁P \ vP \ V [Asp₁P CCO Asp₁ [VP \ V \ CCO]]]] \]

That atelic interpretations are also available with objects whose quantity is known is in line with recent observations in the literature, according to which aspectual markers attached lower in the syntactic structure are associated with a cancellable telicity (Travis 2010). These predicates are associated with a simple event structure, as evidenced by their non-ambiguous counterfactual reading with the adverb *majdnem* ‘almost’ (Piñón 2008).

POs: The POs *egyet* ‘one,ACC’, *(egy)* jót *(one)* good,ACC or nagyokat ‘big,PL,ACC’ are non-subcategorized and non-thematic Accusative constituents with no referential value. They are situation delimiters (Csirmaz 2008) recategorizing atelic VPs (*Mari sétált* ‘Mary walked’) into telic ones (*Mari sétált egyet* ‘Mary took/went for a walk’). Farkas & Kardos (2018) argue that these POs encode an aspectual operator that picks out a contextually specified non-maximal subpart of the events in the denotation of the predicate. In sharp contrast to subcategorized, thematic and referential internal arguments affecting the structure of the event of V (cf. above), these POs are claimed to be base-generated directly in the [Spec, Asp₁P] position, with the main verb undergoing head movement from V to v. The base-generation of POs in [Spec, Asp₃P] generates the weak telicity these structures are associated with.

\[(2) \ [TP \ T [Asp₂P_{MAX} \ Asp₁P \ vP \ V [Asp₁P PO Asp₁ [VP \ V]]]] \]

That CCOs and POs are to be represented differently in the syntax is supported, for example, by facts of passivization (Csirmaz 2008), pronominalization and that, unlike CCOs, POs...
cannot constitute the answer to *wh*-questions (Farkas & Kardos 2018). These structures have a simple event structure (i.e. non-ambiguous counterfactual reading with the adverb majdnem ‘almost’) and in this respect, they share properties of CCOs but contrast with VPrts and RPs, as discussed below.

VPrts and RPs: Hungarian VPrts and RPs appear in the immediately preverbal position in neutral sentences and have a telicizing function (É. Kiss 2008) as in Mari 10 perc alatt/*10 percig pirosra/le-festett egy kerítést ‘Mary painted a fence red/VPrt in 10 minutes/*for 10 minutes.’ RPs and VPrts have been shown to encode an event-maximizing operator (MAX_E) (Filip & Rothstein 2006) that is applied to a partially ordered set of events, from which they pick out the unique largest event at a given situation (Kardos 2012, 2016), thereby ensuring that the resulting predicates have quantized reference, and thus they are interpreted strictly telically. In line with previous proposals (Surányi 2009), we also argue for a multiple-stage derivation of these elements, but contrary to the claims above, we show that the syntactic behaviour of these elements is directly motivated by their aspectual function. More precisely, we also argue that the base-generated position of these elements is in the postverbal domain but, contrary to Surányi (2009), we claim that their first intermediate landing site is [Spec, Asp;P] and not [Spec, PredP] and, in addition, there is a second intermediate landing position in [Spec, Asp;P_{MAX}E], before the final landing site in [Spec, TP] (Surányi 2009), where these elements check the interpretable MAX_E feature of the head and exert their event-maximizing function. It is this latter specifier position of this latter aspectual projection that generates the strong telicity that structures containing VPrts and RPs are associated with. The derivation is also characterized by movement of V to v and then to Asp_{MAX}E and T.

(3) \[\text{[TP VPrts/RPs] } \text{T-V [Asp}_{2\text{MAX}} \text{E VPrts/RPs Asp}_{2\text{MAX}} \text{E } \text{v } \text{[vP DP } \text{v } \text{[Asp}_{1\text{P}} \text{ VPrts/RPs Asp}_{1\text{P}} \text{ [vP DP v [... VPrts/RP]]]]]}\]

Unlike predicates containing CCOs and POs, predicates containing VPrts and RPs are associated with a complex event structure, which is shown by their ambiguous (counterfactual and incompletive) interpretation in the presence of the adverb majdnem ‘almost’ (Piñón 2008).

Some consequences of the analysis: The first important prediction of our analysis is that CCOs and POs cannot co-occur in the same verbal predicate (cf. *Mari evett egyet egy almát ‘Mary ate one,ACC an apple,ACC’) both because of semantic incompatibility (CCOs are subcategorized, thematic and referential entities, whereas POs are not) and because of the syntactic incompatibility between them, with the two elements competing for the same syntactic position: [Spec, Asp;P]. The second consequence of our analysis is the semantic incompatibility between POs (associated with non-maximal semantics) and VPrts and RP (associated with maximal semantics) (cf. *Mari a bolitä/et-futott egyet ‘Mary into the store/VPrt performed a running event’), which is further supported by syntactic facts, according to which the PO, base-generated in [Spec, Asp;P], blocks the movement of the VPrts/RPs to this (intermediate) position. Interestingly, CCOs and VPrts can co-occur in the same verbal predicate (cf. *Mari 10 perc alatt/*10 percig meg-evett egy almát ‘Mari VPrts-ate an apple in/*for 10 minutes’). In this case, when, crucially, telicity is no longer cancellable, we assume that it is only the VPrts that undergoes movement and it is this element that ensures strong telicity, with the postverbal CCO remaining in its original position inside VP. Movement of the CCO to [Spec, Asp;P] would be blocked by the VPrts, and even if it could move to this specifier position, it would give rise to weak telicity, and we would be faced with an aspectual mismatch.

Conclusion: In Hungarian the class of inner aspectual markers is heterogeneous. This aspectual heterogeneity is not only a semantic matter, but it is also reflected in the syntax. The event domain of the Hungarian sentence is more complex than previously thought.